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Abstract

Based on the central limit theorem, we present a new way to produce inde-

pendent true random numbers out of n true random numbers which will work

for n = 2 too. The key idea is to generate a random number by adding n true

random numbers modulo m. The mathematical proof of this method is a numeric

calculation for small n > 0 and the central limit theorem for large n. Because

the n primary numbers can have low Markow entropies, this method is easy to

implement in hardware and can also be used in processors.
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1 Introduction

In practice it’s not simple to produce true random numbers, because real processes
generally are not completely random. The radioactive decay for example is known to
decrease with increasing time and radioactive detectors suffer from artefacts like a finite
deadtime and depend on parameters like temperature and magnetic field. They do also
show several aging effects.
Because of this, random numbers from hardware random number generators normally
need an after-treatment although their low speed (less than 20 kilobyte per second)
disqualifies them for supercomputing applications like monte carlo simulations and real
time high speed applications like crosscorrelation measurements.
The main problem of most true random number generators is that they are prohabilistic,
they do only ’something random’ which can’t be calculated or theoretically described.

The new true random number generation method avoides these disadvantages in
order to be applied in digital ICs e. g. CPUs. This is important because a computer
equipped with a generator of this type can avoid the effort of computing pseudorandom
numbers.

It is known from the central limit theorem that the sum of many true random
numbers is normally distributed if the Lindeberg criterion is fulfilled, which e. g. is the
case for true random bits. That means e. g. that it is possible to produce a normally
distributed random number by producing many true random bits even with low Markow
entropies and adding them with a adder.
For simplicity we focus attention on the sum of m random bits modulo k = 2 because
k < 2 is trivial, k > 2 is similar and the inverse (exnor) is also similar. The sum modulo
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k = 2 can be implemented easily, fast, and cheap because the sum modulo 2 can be
calculated with a simple parity generator; if m = 2 the parity generator is simply one
exor gate. Because the m random bits can be taken from m bit random numbers and a
l bit random number is simply a sequence of l random bits, it’s not necessary to focus
on more than random bits.
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2 Exoring of two random Bit Sequences

Using the entropy [1] of a random bit sequence

E1 = −p(0) · log2(p(0) − p(1)) · log2(p(1)) (1)

it is easy to calculate the entropy of the sequence which is the exor of two similar and
statistical independent random bit sequences minus the entropy of one pimary sequence:

E2 − E1 = −(x2 + (1 − x)2) · log2(x
2 + (1 − x)2) −2 · x · (1 − x) · log2(2 · x · (1 − x))

+x · log2(x) + (1 − x) · log2(1 − x) (2)

with x = p(0) and 1 − x = p(1).

For not perfect random sequences, i. e. 0 < x < 1, x 6= 0.5, this difference is
positive, which can be shown numerically and graphically (Fig. 1)
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Figure 1: y = E2 − E1

Therefore the exoring of 2n (n > 0) is similar and independent random bit sequences
generates a secondary random bit sequence with a greater entropy.
Because equation (2) is independent of the previous bits, the same is true for the Markov
entropies.
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3 Exoring of n random Bit Sequences

Due to the central limit theorem [2] the density function of the sum k of n � 1 random
bits is (nearly) the normal distribution, because this sum complies with the Lindeberg
condition.

If the peak value pv of the density function is exactly m+0.5 (m ∈ �
) the amplitude

of the density function at m − l − 1 (l ∈ �
) is the same as at m + l and hence the sum

modulo 2 has an exact 50% probability to be 0 or 1. This is the best case, because it
means that a sequence of these secondary bits has an entropy of exact 1.0 bit/bit.

In the worst case, pv = m (m ∈ �
), the absolute value of the difference of the

probability that the sum modulo 2 is 0 and the probability that the sum modulo 2 is 1
is

| p(0) − p(1) |worst case=
1
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Due to the Ars conjectandi [3] the standard variance is proportional
√

n, i. e. σ =
c · √n, and therefore

| p(0) − p(1) |worst case=

√
2
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(

∞
∑
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(2·k−1)2
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−

(2·k)2

2·c2·n

)

)

. (4)

The limit value of this expression for n → ∞ is simply zero and it is monotonic
decreasing with increasing n (Fig. 2)
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Figure 2: y =| p(0) − p(1) |worst case , c = 0.5

So even in the worst case the generation of a high entropy random bit sequence by
exoring n low entropy random bit sequences is no problem because the primary random
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bit sequences don’t have to be statistical independent.
Because equation (4) is independent of the previous bits, the same is true for the Markov
entropies.
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