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Abstract

It is easy to compute equilibrium properties of Knudsen gases (high and ultra high
vacuum) because the molecules in a Knudsen gas are only moving on trajectory
parabolas and every trajectory parabola is determined by the initial velocity and
the height. So the expectation values in a Knudsen gas in a homogeneous field are
only depending on the surface temperature, structure, field strength and the height
over the ground. The computations and simulations were made with a) surfaces
which consit only of harmonic bound hard spheres and b) surfaces which consits
of little, harmonic bound hard spheres and mostly a reflecting plane. The results
are that in case a), the ground emits with a direction-independent flux-density,
the gas density decreases mono-exponential and that the gas is isothermal. In case
b) the ground emits with a direction-independent flux, the gas density decreases
more rapid than mono-exponential with height and the gas temperature increases
rapidly with height. So, due to the second law of thermodynamics, simulated or
calculated surfaces have to emitt with a direction-independent flux-density (cosine-
like).

I. Introduction

It is known [1] that in a gas in a homogeneous field with Maxwallian velocity distribution
and statisticaly independent places and momenta the gas temperature is independent
of the height and the gas density decreases mono-exponentially - in agreement with the
second law of thermodynamics. In a Knudsen gas over a ground in a homogeneous
field this would mean that the ground emitted the gas molecule flux density direction-
independently (second Lambert cosine law).
So I made the calculations with an isotropically emitting ground which emits the gas
molecules direction-independent (without a cosine factor). Analog effects are calculated
for a thermal photon-gas in a gravitational field.
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II. Analytical calculations

For simplicity the Knudsen gas is monoisotopic, monoatomic and in a field with the
constant acceleration g. If the gas atoms are not on the ground they are only moving
on trajectory parabolas. So if an atom starts with the velocity v0 at the height h it has

the velocity v =
√

v2
0 − 2 · g · h. This means v0 =

√
v2 + 2 · g · h and the Maxwellian

velocity-density-distribution in spherical coordinates is modified to:

ϕθ(v, h) =
4√
π

(

m

2 · k · T

)
3
2

·(v2+2·g·h)·e−
(v2+2·g·h)·m

2·k·T ·Θ
(

v −
√

2 · g · h · tan(θ)
)

·
v√

v2 + 2 · g · h
(1)

This velocity-density-distribution is normalized only for h=0m. So only

ϕθ(v, h)
π/2
∫

0

2·π
∫

0

∞
∫

0

ϕθ(v, h) · sin(θ)dvdϕdθ

≡ ϕθ(v, h)N (2)

is normalized.
It is important to note that the velocity-density-distribution of the gas flux from an
isotropic-like emitting ground is

ϕN(v, 0) · v0 (3)

and that this is the (unnormalized) velocity-density-distribution of the gas that reaches
the height h per unit time. The temperature of the gas atoms which are impacting on
a thermometer is the average kinetic energy per atom times 1/2k :

T =
m · v2

4 · k
(4)

Therefore the temperature of a Knudsen gas with the phase space density ϕθ(v, h)N is:

T (h) =
m · v2

4 · k
=

m

4 · k

π/2
∫

0

2·π
∫

0

∞
∫

√
2·g·h·tan(θ)

v0 · v2 · ϕθ(v, h)N · sin(θ) · dvdϕdθ (5)

With the substitution
(v2 + 2 · g · h) cos(θ)2

2g
= M (6)

the reversion of the integration order the result is:

T

4
·
3 ·

√
m · g · h · k · T · π · erfc

(

√

m·g·h
k·T

)

e
m·g·h

k·T − 8 · k · T − 2 · m · g · h
√

m · g · h · k · T · π · erfc
(

√

m·g·h
k·T

)

e
m·g·h

k·T − 2 · k · T
−

2 · m · g · h
4 · k

(7)
An example of this temperature distribution in Xenon above a ground with a tempera-
ture of 293K is shown in figure 1. The analogous calculation of the relative Knudsen gas
density shows that the height formula over an isotropically emitting ground is augmented
by a correction term:

̺(h) = e−
m·g·h

k·T −
1

2
Ei

(

−
m · g · h

k · T

)

(8)

Ei is the Exponential Integral.
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Figure 1: The temperature in K in a Xenon Knudsen gas above an isotropically emitting
ground with a temperature of 293K in the gravitational field of the earth.

III. Deterministic simulations with hard spheres
Because Monte Carlo simulations are reproducing the above calculations with the ideali-
sations 3 and 4 the first principles simulations were carried out completely deterministic
with atoms as hard spheres.
Due to the system time dependent pseudo random initialisation it is easy to show the
reproducebility of the above calculated effects. For simplicity the simulated gas consitits
only of one hard sphere and the ground consist of a cubic lattice of hard spheres, which
are in thermal motion around their rest positions. The rest positions are located in a
plane (surroundig underground lattice) which reflects the gas atom elastically before it
moves into the lattice. The system is limited by a ceiling at the height h and consists of
the same lattice as the ground lattice. The walls of the system are elastically reflecting
because otherwise the gas would diffuse away from the ground atoms and the ceiling
atoms at the middle of the ground and ceiling plane.
The simulations were made a) with atoms which are so large that the gas could not reach
neither the reflecting ground plane nor ceiling plane and b) with atoms that are so small
that in approximately sixty percent of the impacts of the gas atom on the ground or
the ceiling the gas atom impacts on the reflecting plane. In the case of the other forty
percent the gas atom impacts with one lattice atom.
In case a) the angle probability density of the impacts shows the mutual ”shading” of
the large lattice atoms. Therefore the angle probability density from the impacts from
trajectory parabolas which are longer than two latice constants is nearly cosine-like (see
fig. 2). In case b) the angle probability density of the impacts shows, due to the isotropic
scattering of hard spheres [2] and the little mutual ”shading” of the lattice atoms, that
the angle probability density of the impacts from trajectory parabola which are longer
than two lattice constants is roughly constant (see fig. 2).
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Figure 2: The angle probability density divided by the functional determinant in spher-
ical coordinates above the angle for case a) and b).

So the case a) is approximately the case of parallel surfaces with the second Lambert
cosine law which means height independent temperature and height formula and case
b) is approximately the case of parallel isotropically emitting surfaces. Therefore, for
the case g = 0m/s2 the temperatures of the two lattices (=average energy per degree of
freedom times 2/k) are noisy but equal (fig. 3). In the case a) due to the cosine-like

Figure 3: The ground temperature (291.68±3.03)K (dashed) and the ceiling temperature
(291.22 ± 1.00)K at h=1m, g = 0.0m

s2 .

angle probability density even at high potentials the ground and the ceiling lattice have
no significant average temperature difference (fig. 4). In the case b) due to the roughly
constant angle probability density the ground and the ceiling lattice have comparably
large differences in average temperature (fig. 5). Even if ground and ceiling lattice are
initialised with the same starting temperature the temperature difference is reproduceble
(fig. 6).
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Figure 4: The ground temperature (dashed) and the ceiling temperature with cosine-like
emission at h=1m, g = 104 m

s2 .

Figure 5: The ground temperature (283.01±5.00)K (dashed) and the ceiling temperature
(307.23 ± 11.96)K with constant-like emission at h=1m, g = 104 m

s2 .

Figure 6: The ground temperature (dashed) and the ceiling temperature with constant-
like emission at h=1m, g = 104 m

s2 .
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IV. Discussion and Conclusions

Because the Knudsen gas above a ground in a homogeneous field is determined by the
potential gh, the ground temperature and especially the angle probability density of the
trajectory parabolas in the Knudsen gas it is simple to make analytical calculations and
first principles simulations with, for example, isotropic-like emitting surfaces. Because a
Knudsen gas between not cosine-like emitting surfaces in a homogeneous field produces
reproduceble significant temperature differences, it would be interesting to find out if
every real surface emits on average according to the second Lambert cosine law and
therefor satisfies the second law of thermodynamics.
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